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Abstract

In this paper a simple method is proposed to carry out temperature-modulated calorimetry with multiple frequencies. The

method is based on modulation with a complex sawtooth. The harmonics of the Fourier series of the measured heat-¯ow rate

and temperature are used to extract data pertaining to the frequencies of the 1st, 3rd, 5th, 7th and 9th harmonic. The complex

sawtooth produces similar modulation amplitudes of the temperature of the ®rst four harmonics. In temperature-modulated

differential scanning calorimetry with a period of less than about 150 s, corrections by extrapolation to zero frequency are

commonly needed. With the proposed method, these extrapolations can be done in a single experiment. Dif®culties of baseline

subtraction and other possible instrumentation and software problems are discussed. # 2000 Elsevier Science B.V. All rights

reserved.
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1. Introduction

Heat capacity can be determined by a number of

calorimetric techniques. Standard differential scan-

ning calorimetry (DSC) has gained increasing popu-

larity over the years because of its large temperature

range from 102 to 103 K, and because of its ease of

operation. The method requires the measurement of

the differential heat-¯ow rate DHF into a sample and a

reference calorimeter as response to a rate of tem-

perature change which is forced by the heating pro-

gram. The programmed temperature is a linear ramp

over a rather large temperature interval (typically 50±

100 K) with a heating rate of 5±40 K minÿ1 [1].

With the invention and development of tempera-

ture-modulated differential scanning calorimetry

(TMDSC) [2±4] it became possible to provide data

on the frequency-dependence of the heat capacity, as it

is observed, e.g., in the glass-transition region [5]. The

programmed temperature for TMDSC is produced by

superposition of a constant, average heating rate hqi,
(typically 0.5±5.0 K) and a temperature-modulation
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with a frequency o (�2p/p) with a period p of usually

30±60 s and a sample-temperature amplitude of 0.1±

1.0 K. The common types of modulations are sinu-

soidal or sawtooth-like and the usual method of eva-

luation involves taking the ratio of the amplitudes of

the ®rst harmonics of the heat ¯ow rate, AHF, and the

rate of change of the sample temperature, ATs
� o, to

be multiplied with the needed correction factors for

the chosen sample and instrument.

The advantage of TMDSC using modulation with a

sawtooth is its ease of precise generation, but it was

shown that for modulation periods of less than about

150 s, the measured heat capacity is less than its true

value [6]. The data need to be extrapolated to zero

frequency to derive the true heat capacity. By using the

®rst and several of the higher harmonics of the saw-

tooth one can, however, determine this frequency-

dependence of the experimental data in a single run

[7].

A simultaneous use of several modulation frequen-

cies was proposed already at the outset of TMDSC

[2±4] but, as far as we are aware of, has not yet been

routinely applied to TMDSC. The disadvantage of

using the higher harmonics for calculation of the true

heat capacity is the rapid decrease in amplitude of the

higher harmonics as can be seen in Eq. (1), shown

below. In the present paper we demonstrate that it is

possible to produce a complex, centrosymmetric saw-

tooth with several sinusoidal Fourier components of

similar amplitudes which removes the problem of

small amplitudes of the Fourier components. In addi-

tion, the more detailed experimental analysis of

TMDSC carried out in the present set of investigations

has lead to some observations on procedures of

measurement which are not sound when applied to

TMDSC, although valid in the standard DSC proce-

dure. Two of these are baseline-subtraction and data-

smoothing in the time-domain before Fourier trans-

formation. The reason for this complication is that in

TMDSC with sawtooth modulation, time intervals are

incorporated in the evaluation when the calorimeter is

not in steady-state. Methods are indicated to alleviate

these dif®culties, speci®c to sawtooth modulation.

2. Computational details for sawtooth modulation

For temperature-modulation about the temperature

T0 with a centrosymmetric sawtooth, as carried out in

quasi-isothermal TMDSC (hqi�0), one obtains the

following series of harmonics

T�t� ÿ T0

� 8ATs

p2
sinot ÿ 1

9
sin 3ot � 1

25
sin 5ot

�
ÿ 1

49
sin 7ot � 1

81
sin 9ot ÿ � � �

�
; (1)

where ATs
is the modulation amplitude; o, the basic

frequency in rad sÿ1; and t, the time. In order to

generate a complex sawtooth Tx(t) with equal ampli-

tudes for four of the harmonics of the Fourier series of

Eq. (1), one can add the following four series as shown

The result is the complex series Tx(t), illustrated in

Fig. 1, together with its derivative, which has the

appearance of a heat-¯ow rate and representing a

meander of different amplitudes. This precise complex

sawtooth has 26 different segments. The harmonics of

(2)
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Tx(t) and dTx(t)/dt for the order of the harmonics, n�1,

3, 5, 7, and 9 and their sums are shown in Figs. 2 and 3.

The harmonics of Tx(t) with n�1, 3, 5, and 7 have the

same amplitudes, the harmonic with n�9 is smaller.

Higher harmonics are not shown in the ®gure, but

rapidly decrease further with n>9. The temperature

modulation Tx(t) should, thus, provide an advantage

over modulation with Eq. (1) for the calibration of the

frequency dependence of the apparent heat capacity,

developed earlier [7].

The calculation of the heat capacity, Cp, from the

various harmonics requires the evaluation of the

amplitudes of the heat-¯ow rate for each harmonic

n, AHF(n), and the corresponding sample temperature,

ATs
�n�

Cp � AHF�n�
ATs
�n�

1

n � o� K�no�; (3)

where K(no) is a dimensionless constant, which is

usually set approximately by comparison with the heat

of fusion of indium, and later improved by measure-

ment of Cp of sapphire as a calibrant.

In TMDSC under conditions of sinusoidal modula-

tion which maintains steady state, K(no) in Eq. (3) is

Fig. 1. Sample temperature Ts(t) (heavy line, left ordinate) and its derivative dTs(t)/dt (thin line, right ordinate) as given by Eq. (2) for a

modulation period p of 210 s.

Fig. 2. Harmonics n�1, 3, 5, 7, and 9 of the sample temperature Ts(t) (thin lines) and their sum (intermediate line) in comparison to the curve

shown in Fig. 1 (heavy line).
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given by [1�(Cro/K)2]1/2. It derives from the neces-

sity to correct the amplitude of the heat-¯ow rate for

the different steady-state behaviors of the sample and

reference calorimeters (Cr�heat capacity of the refer-

ence calorimeter, K�Newton's law constant) [8,9].

For sawtooth modulation, steady state is always lost

immediately after each abrupt switch in steady state.

As soon as the steady state is lost in modulated

TMDSC, an additional dependency of K(no) devel-

ops, affected by sample and reference masses, type of

sample, calorimeter positioning, and the involved

thermal contacts. Although for the power-compen-

sated DSC, it was suggested to correct the measured

data by using the measured phase shift between the

heating and heat-¯ow rates [10], a more correct

method seems to be the use of the correction function:

K�no� �
������������������������
1� t2�no�2

q
; (4)

where t is the time-constant that depends on the

instrument, reference and sample [6]. The time con-

stant t in Eq. (4) can be obtained by plotting the

inverse of the squared, uncorrected heat capacity of

Eq. (3) versus the square of the frequency [7]. The

intercept of the plot at (no)2�0 is directly the inverse

of the squared, true heat capacity if the heat-¯ow rate

was calibrated before. Eq. (4) has by now been used

successfully for empirical ®tting of results from the

Perkin-Elmer DDSCTM [11], the Mettler-Toledo

ADSCTM [12,13], and the TA Instruments MDCTM

[14]. For the latter this empirical ®tting is only neces-

sary if steady state is lost.

It should be noted that an additional calibration of

the heat-¯ow rate must be done, as mentioned above,

at every temperature by comparison with an identical

measurement of a calibrant, such as sapphire. Both

measurement and calibration runs must, naturally, also

be baseline-corrected, which also causes small errors,

as will be discussed below.

With the complex sawtooth of Eq. (2), a single

experiment can produce the several measurements at

different frequencies necessary to assure a statistically

signi®cant precision in the linear regression and extra-

polation of Eq. (4) to (no)2�0. The application of Eq.

(3) implies that the measured heat-¯ow rate is linearly

related to the temperature change and that the super-

position principle holds [15,16]. Linearity of the

response requires an instrument which also responds

linearly in the sum of all distortions of the output

signal, which in case of the Perkin-Elmer DSC has

been proven and represented by the Green's function

(apparatus function) [17], although limits apply, as

will be shown below in the discussion of baseline

correction and instrumental problems.

The question may be raised (and has been asked by

the reviewer) if modulation with any other simple,

non-sinusoidal function may similarly be used to

simultaneously produce multiple frequency excitation

of the sample temperature and result in a heat-¯ow-

rate response useable for the evaluation of Eq. (3) at

Fig. 3. Harmonics n�1, 3, 5, 7, and 9 of the derivative of the sample temperature dTs(t)/(ndt) (right ordinate, thin lines) and the sum of

dTs(t)/dt (left ordinate, intermediate line) in comparison to the curve shown in Fig. 1 (heavy line).
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different frequencies. The sawtooth was not only

chosen because of its multiple terms in the Fourier

series of Eq. (1), but also because of the initial

detriment of the rapid decrease in amplitude of the

higher harmonics and the missing even harmonics

which spaces the measured frequencies more widely.

By the summation of Eq. (2), the detriment of decreas-

ing amplitudes could be removed to such a degree, that

the total temperature variation in (Fig. 2), shown by

the heavy line, can be almost perfectly ®tted by the

sum of the ®rst ®ve harmonics (thin line), i.e., adding

any higher harmonics cannot yield any more signi®-

cant information, and all of the used harmonics have

equal contributions to the sample temperature (except

the smaller 9th harmonic).

It may be suggested that a meander pro®le, which

consists of a constant temperature switched periodi-

cally by �ATs
about the temperature, T0 is even easier

to program. The Fourier series of this modulation is

easily written for the case of crentrosymmetry as

T�t�ÿT0� 4ATs

p2
sinot � 1

3
sin 3ot ÿ 1

5
sin 5ot

�
� 1

7
sin 7ot ÿ 1

9
sin 9ot � � � �

�
: (5)

This is a series with linearly decreasing amplitudes,

and thus much less suited for changing to equal

amplitudes by the simple method employed here in

Eq. (2). Furthermore, the meander is discontinuous at

any time that is a multiple of p/2. Also, note that

except for a phase shift of 908 and a different ampli-

tude, Eq. (5) is the derivative of Eq. (1), and mathe-

matically the differential heat-¯ow rate would become

similar to the second derivative of Eq. (1), i.e., it would

alternate between zero (at constant temperature) and

�1 (at multiples of p/2). Only due to the inability of

the calorimeter to reach instantaneous steady state in

the vicinity of times equal to multiples of p/2 is then a

measurement possible, which approaches, however,

the appearance of a sawtooth, interrupted by isother-

mal segments. Such modulated temperature, however,

is more complicated to model and usually does not

exclude even harmonics. Trial and error would show if

such simple modulation yields acceptable results, just

as we could prove that a heat-¯ow DSC with rather

poor sawtooth control produces useful multi-fre-

quency modulation [14].

3. Simpli®ed complex sawtooth for temperature
modulation

The quality of the ®t to the curves of Fig. 1 shows

that the sum of harmonics represents the curves well.

Since, however, this precise representation is not a

condition for successful frequency-dependent

TMDSC, the 26 segments were simpli®ed to a com-

plex sawtooth of only 14 segments. Table 1 gives an

example for an overall period p of 210 s. Each sub-

segment is 15 s long and the harmonics with n � 1, 3,

5, and 7 correspond to the periods p of 210, 70, 42 and

30 s. The 9th harmonic with a period of 23 1
3

s is used

for reference. It has a distinctly lower amplitude, but

according to Eq. (2), its amplitude is still increased by

a factor nine relative to a single sawtooth and has

proven to be still useful for actual measurement

[11±14].

The appearance of the approximate complex saw-

tooth Tc(t) and its meander-like derivative dTc(t)/dt are

shown in Fig. 4 and the analyses corresponding to

Figs. 2 and 3 are displayed in Figs. 5 and 6. The

amplitudes of the various harmonics are collected in

Table 2. Overall, this complex sawtooth ful®lls the

need of a temperature program to analyze the fre-

quency-dependence of the sample response to tem-

perature modulation, as outlined above. Since it is a

Table 1

Approximate complex sawtooth program for o � 210 sa

Segment No.b Time (s) Change in

temperature (K)

1 0!7.5 0.0!1.0

2 7.7!22.5 1.0!0.0

3 22.5!37.5 0.0!0.5

4 37.5!52.5 0.5!0.0

5 52.5!67.5 0.0!0.5

6 67.5!82.5 0.5!0.0

7 82.5!97.5 0.0!1.0

8 97.5!112.5 1.0!ÿ1.0

9 112.5!127.5 ÿ1.0!0.0

10 127.5!142.5 0.0!ÿ0.5

11 142.5!157.5 ÿ0.5!0.0

12 157.5!172.5 0.0!ÿ0.5

13 172.5!187.5 ÿ0.5!0.0

14 187.5!202.5 0.0!ÿ1.0

15 202.5!210.0 ÿ1.0!0.0

a Note that in order to keep a centrosymmetric sawtooth,

segments 1 and 15 are half segments.
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Fig. 4. Sample temperature Tx(t) (heavy line, left ordinate) and its derivative dTx(t)/dt (thin line, right ordinate) for the complex sawtooth

given in Table 1 for a modulation period p of 210 s.

Fig. 5. Harmonics n�1, 3, 5, 7, and 9 of the sample temperature Tx(t) (thin lines) and their sum (intermediate line) in comparison to the curve

shown in Fig. 4 (heavy line).

Table 2

Amplitudes of the various harmonicsa

Number of the harmonics (n) Amplitude of Tx (K) Amplitude of dTx/dt (K sÿ1) Amplitude n dTx/(n dt) (K sÿ1)b

1st 0.37819 0.011315 0.011315

(2nd) (1.5�10ÿ6) (9.0�10ÿ8) (4.5 � 10ÿ8)

3rd 0.25112 0.022538 0.007531

5th 0.21721 0.032487 0.006497

7th 0.34771 0.072790 0.010399

(9th) (0.06711) (0.018058) (0.002644)

a For the complex sawtooth of Fig. 1, column 2 has the constant values 0.3325, and column 4 the constant value of 0.00995 for n�1, 3, 5

and 7; the second harmonic amplitudes are zero.
b These amplitudes are the normalized data of column 3 by division with n, the order of the harmonic.

186 B. Wunderlich et al. / Thermochimica Acta 348 (2000) 181±190



single-run measurement, the analysis could be

included in the software for data treatment, together

with the extrapolation to zero frequency described in

Ref. [7]. Furthermore, the 14 segments of the complex

sawtooth are suf®ciently simple to be programmed

manually with any high-quality, standard DSC and

repeated continually for quasi-isothermal TMDSC

analysis. Characteristic of any TMDSC experiment

is its Lissajous ®gure, consisting of a plot of the heat-

¯ow rate (represented by the differential of tempera-

ture) versus the temperature modulation, as displayed

in Fig. 7. Since all ®gures in this paper are derived by

calculations based on the modeling software of [18] on

the sawtooth described in Table 1, it excludes any

instrument effects. Fig. 7 can, thus, used to be com-

pared to any actual TMDSC runs and help in the

interpretation of the results. The deviations from a

perfect vertical on changing the heating rates in Fig. 7

are due to the resolution of only 1
2

s in the spread-sheet

used for analysis. In actual measurements one ®nds in

these temperature regions the approach to steady state.

The absence of the even harmonics in the Fourier

series shown in Table 2 is a measure of the centrosym-

metric nature of the temperature modulation and the

Fig. 6. Harmonics n�1, 3, 5, 7, and 9 of the derivative of the sample temperature dTx(t)/(ndt) (right ordinate, thin lines) and the sum of

dTx(t)/dt (left ordinate, intermediate line) in comparison to the curve shown in Fig. 1 (heavy line).

Fig. 7. Lissajous ®gure of the complex sawtooth of Fig. 4 consisting of a plot of Tx(t) versus its derivative dTx(t)/dt. The numbers and arrows

in the ®gure indicate the segments and directions of progress in temperature of Table 1.
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corresponding calorimetric response. The small resi-

dual second harmonic of Table 2 results from rounding

errors. The spreadsheet employed for the analysis was

described earlier [18] and can easily be expanded for

the higher harmonics and off-line data evaluation.

For standard TMDSC with an underlying heating

rate, hqi, the required temperature change must be

added to the sawtooth. As long as the to be measured

heat capacity is independent of frequency and constant

over the range of one modulation, the deconvolution of

the added thermal effect due to hqi is a constant and

can be used to get a measure of the heat capacity as

derived from standard DSC [2±4]. If the heat capacity

is frequency-dependent, the measured apparent heat

capacity will contain contributions from a Doppler

effect which is caused by superposition of the fre-

quency o and the linear heating rate hqi. Details of this

effect were worked out for the analysis of the glass

transition [19].

4. Baseline correction and instrumental problems

All ®gures presented in this paper are idealized and

do not include any instrument effects. As shown in

Fig. 4, the complex sawtooth used for the discussion is

perfect, as de®ned in Table 1. If this sawtooth is

produced at the heater of the calorimeter as Tb, the

sample temperature Ts lags behind Tb because of the

sample heat capacity and the thermal resistance of the

path of heat ¯ow in the calorimeter. A calculation

which considers these effects for two segments of the

sawtooth is illustrated in Fig. 8. The calculation is

based on the Fourier equation of heat ¯ow, which is a

linear differential equation [1]. The solutions before

and after changing the heating rate at t1 are listed in

Fig. 8. Despite the lags, the different amplitudes of the

Fourier harmonics of the temperature differences can

be introduced into Eq. (3) and with the proper K(no)

yield the correct heat capacities [20]. As long as the

changes are linked by the Fourier equation, the two

temperature differences are linearly coupled, as shown

in Fig. 8, and the analysis of the TMDSC data yields

the proper heat capacity even if steady state is lost, and

even if steady state is never reached during the mod-

ulation periods. As soon as the response of the system

is nonlinearly disturbed, as by software-dictated

changes that cannot be described by linear differential

equations, Eq. (3) needs appropriate corrections,

which are usually, however, not available to the

experimenter and have to be deduced empirically.

Software problems of particular importance are

spikes introduced in the heat ¯ow at the time of

changing heating rate at t1 of Fig. 8. These spikes

arise from the improper response of the calorimeter to

the change in heater temperature. Although the spikes

can sometimes be removed by subtracting a baseline

run of two empty calorimeters in the time domain, it

will be shown next, that this is not a fully valid

correction method. Another method to remove the

spikes and other noise of the recording is to smooth

the calorimeter response over a number of data points.

Again, such smoothing can destroy the linearity if it

removes, e.g., exponential changes of the system as

occur on approach to steady state and are shown in

Fig. 8. The same effect is illustrated in more detail in

the next two paragraphs on hand of problems with

baseline subtraction. It should, however, be noted that

the errors introduced by baseline subtraction and

smoothing are often small and of concern only if a

precision in heat capacity of better than �1% is

desired [13]. Not introducing these mathematically

unfounded corrections usually causes a much bigger

error, so that the only route to precision calorimetry is

to minimize such problems by choosing proper instru-

mental conditions. Recognizing these problems of

TMDSC may also induce the development of new,

improved calorimeters by the instrument providers.

Fig. 8. The effect of heat capacity and thermal resistance on two

segments of a sawtooth [16]. A perfect sawtooth is assumed as

heater temperature Tb, the sample temperature Ts is computed as

indicated. A similar calculation can be made for the reference

temperature Tr. The value of Cp/K is chosen arbitrarily to illustrate

an easily recognizable effect.

188 B. Wunderlich et al. / Thermochimica Acta 348 (2000) 181±190



As just mentioned, for a measurement of the true

heat capacity by TMDSC it is not only necessary to

complete runs at different frequency for the sample

and the calibrant, as outlined above, but both of these

experiments must also be corrected for the asymmetry

that may exist between the reference and sample

calorimeter. Two methods are commonly used for this

correction. One involves a complete third run to

establish the heat-capacity correction using Eq. (3)

as follows: two empty pans are measured against each

other in a baseline run and evaluated in the same

fashion as the sample and reference runs. Basically

this method is correct, but a problem arising in this

method is that positive and negative asymmetries yield

the same positive amplitudes. Methods have been

developed to overcome these dif®culties by introduc-

tion of an arti®cial asymmetry of known direction, or

by actual evaluation of the phase shift of the baseline

run [21].

Another method, which is mathematically not

sound for TMDSC, was adapted from the routine

measurements by standard DSC where it is a proper

method since the subtraction is only carried out under

condition of steady state. It requires to establish a

baseline by running the calorimeter with two empty

pans and subtracting it from the reference and sample

runs in the time domain (before Fourier transforma-

tion to the frequency domain, i.e., computation of the

amplitudes of modulation). Several manufacturers

include an automatic subtraction of this baseline in

order to facilitate the measurements. For quantitative

measurements of high quality, we observed that this

method is basically ¯awed, although the error may be

partially compensating between the sample and refer-

ence runs, and at least at present be of similar magni-

tude as the errors introduced by defects in the

instruments and operating systems.

To illustrate the problem of the method of baseline

subtraction in the time domain, Table 3 shows data for

two runs and the effect of subtraction of the runs in the

time domain followed by analysis, as indicated in the

footnote and explained in more detail in [20]. The

calculations were done by assuming no instrument

effects and strict adherence to the Fourier equation of

heat ¯ow for the computation of the temperature lags,

as illustrated also in Fig. 8. In the ®rst two rows of

Table 3 it is shown that despite reaching steady state

only in the data of File No. 4, both Files No. 4 and No.

6 can after proper correction give precise heat capa-

cities [20]. Subtracting Files No. 4 as an assumed

baseline run from the sample run of File No. 6 in the

time domain, followed by the standard TMDSC ana-

lysis leads, however, to an error ofÿ1.5%, as is shown

in the last row of Table 3. Despite linearity of all

calculations, the time-dependent heat ¯ows of the

sample run (No. 6) and the baseline run (No. 4) are

not additive for the Fourier analysis since they contain

contributions from the exponential approaches to

steady state which are different for reference and

sample.

5. Conclusions

It is shown that one can generate a complex saw-

tooth that may permit measurement of an apparent

Table 3

Results of the calculation of heat capacity for sawtooth modulationa

File No. CsÿCr (K) AD/A (o) Deviation (%) Corrected Deviation (%)

4 3ÿ1�2 1.996 ÿ0.20 2.00 0

6 60±1�59 58.886 ÿ0.19 59.00 0

6±4 59ÿ2�57 56.015 ÿ1.73 56.126 ÿ1.5

aThe heat capacities Cs and Cr, when divided by the Newton's Law constant K, are given in seconds, s; the linear heating and cooling rates

of the sawtooth q are 0.04 K sÿ1; A, the amplitude set for the sawtooth is �1.0 K; the period p is 100 s; the frequency o�2p/p�0.062832 rad

sÿ1; at time t�0: Ts�Tr�To; Cp(TMDSC)/K�(AD/A)/o; the correction factor for the TMDSC heat capacity is [1�(Cro/K)2]1/2 [see Eq. (4)].

The Sample temperature during the heating or cooling cycle is (subscripts: sample�s, reference�r): T1
s;r � Ts;r�tx� � q�t ÿ tx� � �qCs;r=K�

�1ÿ exp�ÿK�t ÿ tx�=Cs;r��. The approach to steady state after the switch from heating to cooling and vice versa (at t�tx) is: T2
s;r �

��A� Ts;r�tx���1ÿ exp�ÿK�t ÿ tx�=Cs;r��, where T1 and T2 are the appropriate solutions of the heat-¯ow rate equation, as given in [1], see

also Fig. 8. The total response to the sawtooth modulation is, thus: Ts;r�t� � T1
s;r�t� � T2

s;r�t�. The deviations in the last column are computed

relative to the correct values of column 2.
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heat capacity as a function of frequency to eliminate

instrument effects. It may even be possible after

subtraction of the instrument effects to establish the

frequency dependence of heat capacity as it is of

interest in characterizing glass transitions [5]. In a

series of subsequent papers, modulation with this

complex sawtooth will be described, analyzed, and

discussed based on data from a power-compensated

DSC and two heat-¯ux DSCs [11±14]. In the course of

the study of sawtooth modulation, it was also discov-

ered that software effects, data smoothing, and the

common baseline subtraction in the time domain, are

not mathematically sound for the use in TMDSC. It is

hoped that future instrument developments take these

observations into consideration to advance the quality

and capability of TMDSC.
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